The use of Ceramic Coatings in Orthopaedic Implants

Titanium Nitride Ceramic Articulating against Polyethylene and Cartilage
Introduction
Joint replacement arthroplasty is considered to be one of the most successful surgical procedures. Until recently joint replacements have only been carried out on older, less active patients. The success of these joint replacements encouraged the use of artificial joints in younger persons with a more active lifestyle (1). Activity Levels (2, 3) and with it, the revision rates in total knee replacements is considerably higher in younger patients (4). The life expectancy of this younger patient is higher than the lifespan of the average knee or hip implant (5).

The most commonly used orthopaedic implants are of the metal-on-polyethylene type. Polyethylene wear particle induced osteolysis has been identified as the main cause of failure of total knee arthroplasty and especially the occurrence of fatigue-type wear that can destroy a tibial inlay in less than 10 years, is of major concern (6, 7, 8).

Parameters Influencing Wear in TKA
There are numerous parameters influencing the wear of polyethylene components in total knee arthroplasty: the patient’s life style, the level and type of stresses on the articulating surfaces, material properties, imperfections of polyethylene components, and the coefficient of friction (9).

Improving Implant Design Geometry
In a knee implant the stress level depends on the load and the contact area between the articulating tibial and femoral components. The contact stresses in many non-mobile bearing knee designs are much higher than previously estimated and can easily exceed the yield point of UHMWPE by as much as 3 times (10).

The Mobile Bearing TKA
The introduction of the Mobile Bearing into the knee designs by Goodfellow and O’Connor and the further improvement of the meniscal bearing design by Buechel and Pappas has lead to the view that three compartmental knee implant design can contribute substantially towards the reduction of polyethylene wear (11, 12, 13, 14).

Contact Area
In the mobile knee designs, currently available, great differences can be found in the contact area between the femoral implant and the polyethylene articulating counter surface (15,16). The ACS® knee has the highest contact area at extension (where the highest load occurs) and at 60° of flexion.
The Polyethylene
Many attempts have been made in the past to improve the wear characteristics of polyethylene, including carbon-fiber reinforcement (PolyTwo™), polymer reprocessing like Hot Isostatic Pressing (Hylamer™). Hot Pressing (PCA™) was another attempt to improve the articular surface but was associated with early delamination. It shows clearly that the in vitro investigations may not fully predict the performance in vivo (17).

Cross linked Polyethylene
Laboratory simulation demonstrated that wear resistance of polyethylene improves with increased cross linking of the polymer chains, however it may also change either the amorphous or both the amorphous and crystalline regions of the resulting polymers, potentially affecting mechanical properties and fatigue characteristics. As it looks like Cross Linked PE works well in hip designs, this material for application in knee replacement is still under debate (18, 19). In the ACS® knee standard ram-extruded GUR 1000 Polyethylene (stearate free and Ethylene Oxide sterilized) is used.

Metal Substrate
In the hip, damage or scratching of the metal counterface has been shown to accelerate polyethylene wear and similar data have been found in knees. In the hip the use of ceramic femoral heads (Alumina™, Zirconia™) is recommended which are more damage- and scratch resistant and show extreme lower long term wear rates (20).

Monolithic Ceramic components, investigated mainly in Japan, have not shown to reproduce the same clinical longevity as the Cobalt Chromium implants (21).

Oxidized Zirconium implants show excellent wear characteristics against polyethylene, but at this time require the use of bone cement for fixation (22, 23).

Ceramic Coatings to reduce wear, corrosion and to increase scratch resistance
- increased hardness of the articulating surface (Fig. 9)
- increased scratch resistance
- lower friction coefficient
- improved wettability
- reduced wear of the counterface
- higher corrosion resistance
- decreased metal ion release
- enhanced bone ingrowth capacity
- increase fatigue strength
- increased biocompatibility
Titanium Nitride Coating
In the late 70 and 80’s of the last century, some of the Cobalt Chromium implants had a small Nickel content to add to strength of the implant. Nickel is the primary cause for metal sensitivity, although some patients have shown to be hypersensitive to other metals such as Cobalt and Chromium. Since the end of the 1990’s TiN (Titanium Nitride coatings) have been successfully applied to shield the body from metal ions that could cause allergic reactions (24, 25).

Less Wear from Carbides
During the casting of orthopaedic components the carbon content of the alloy will form carbides, junctions between metal and carbon. Where these much harder particles protrude the surface they may harm the articulating counterface. By covering these carbides with a harder ceramic this wear will be reduced (26, 27).

Higher resistance to scratch formation
Wear simulator tests are usually done with implants that come right from production. However it is known that particles in the body such as bone chips and bone cement particles can lead to increased abrasive wear (26). Ceramic coated implants have a higher resistance against scratching (28, 29).

Less deeper Scratches
The height of the lip of a scratch is directly related to the amount of abrasive wear. TiN coated implant have a lower scratch lip (30).

Less wear from scratched components
When a wear simulator test is performed with explanted components it shows the reduction of abrasive wear in TiN coated implants (27).
Lower Coefficient of Friction
Wear damage to the articulating surfaces is associated with the frictional forces at the interface. The coefficient of friction depends on the material and the surface finish of the articulating surfaces and the lubricating regimen (31).

Better Wettability
When placing a droplet of de-ionised water on the surface of an implant, the contact angles can be measured. TiN shows to be more hydrophilic than non coated CrCoMo. A better wettability will increase the lubrication, decreasing the coefficient of friction and this will help to reduce the wear (29, 31).

Lower Surface Tension:
DOT Rostock established the relation between wettability angle and surface tension of non-coated and TiN coated implants (32).

Better and faster bone ingrowth.
This lady received a Titanium Nitride coated knee implant, but unfortunately she fell during shopping at 3 months post-operatively. As she tore both collateral ligaments the implant had to be revised for a type with more intrinsic stability. Notice the abundant bone ingrowth on both components (pictures courtesy of Mr D. Woodnutt, consulting orthopaedic surgeon Morriston Hospital Swansea UK).

Less Ion Release
All implants corrode at a rate determined by their surface area and cause a release of metal ions. In this graph, derived from a test done at the University of Würzburg, Germany it shows that the passive Chromium ion release (without articulation) is reduced to less than 10% at 10 days in NaCl solution (35).
Quality Assurance

The application of the Titanium Nitride Ceramic coating is a Physical Vapour Deposition(*). The name PVD stands for a wide range of applications each with its own physical characteristics. In order for the coating of an implant to be able to function long term it is crucial that the PVD process is reliable, reproducible and has proven itself in clinical application. Especially the adhesive strength of the coating onto the substrate is of vital importance. Various in-process and batch quality checks are performed.

Rockwel test

A diamond cone penetrates the coating layer with defined force. This will deform both the coating and the substrate. Optimal coating will show no delamination (picture left). Insufficient adherence of the coating will result in delamination as seen on the right (31,34).

Bending test

A metal strip is included in each batch of implants to be coated. To check the adhesive strength of the coating the strip is bend up to 180°. Uniform crack network is seen without delamination (34).

Technical Data of TiN

Coating Thickness: 4.5 +/- 1.5 μm
Hardness of TiN: 23000 (+/- 2000 MPa)
Hardness of CrCoMo: 5000 MPa
Adhesion Strength: HF 1-4
Surface Roughness: Ra < 0.03 μm

Pin-on-Disk test

As the main cause for scratches of implant components may be the presences of bone cement particles, a disk of PMMA bone cement is used against a TiN coated metal disk. No delamination is seen, not even at a load of 500 MPa, which is 50 times higher than the normal, vivo pressure in the knee, being less than 10MPa (26, 31, 34).
A selection of implants available with TiN Coating

Virtually any orthopaedic implant articulating against polyethylene may benefit from the application of a ceramic surface coating.

ACS® Mobile Bearing Knee Prosthesis is available in cemented and cementless design and the cemented semi constrained ACS® SC version.

ACS® Femoral components for cementless fixation with or without HA/TCP.

ACS® Cemented Tibia with shaft extension.

ACS® SC semi constrained femoral component and detail of the mechanism.

28 and 32 mm heads for Hip Implants articulating against polyethylene.

Capica® Shoulder Surface Replacement.

Advanced Ceramic Coated Implant System

A special application of ceramic coating on orthopaedic implants is the ACCIS® coating in which a Ceramic Coated surface articulates against a Ceramic Coated Surface. It is available for Total Hip and Resurfacing Hip arthroplasty. A dedicated brochure is available.

Agilon® shoulder and Mutars® humerus replacement.
Literature

(1) Source: The Swedish Joint Replacement Register: http://www.jru.orthop.gu.se/
(8) Why Are Total Knee Arthroplasties Failing Today?: Peter F. Sharkey, MD; William J. Hozack, MD; Richard H. Rothman, MD; Shani Shastri, MD; Sidney M. Jacoby, BA CORR november 2002 pag 7-14
(9) Factors Affecting Polyethylene Wear in Total Knee Arthroplasty: Markus S. Kuster MD, PD, PhD; Gwido W. Stachowiak, PhD Klinik für Orthopädische Chirurgie, Kantonsspital, CH 9007 St Gallen, Switzerland
(14) Mobile-Bearing Knee Replacement: clinical Results A Review of the Literature: John J. Callaghan, MD CORR 200Q NO.392, pp. 221–225
(15) Mobile-bearing Total Knee Arthroplasty Design Factors in Minimizing Wear: Douglas A. Dennis, and Richard D. Komistek CORR 2006 Number 452, pp. 70–77
(22) Oxinium: http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfMAUDE/Detail.CFM/?MDRFOI_ID=498618
(23) An Oxidized Zr Ceramic Surfaced Femoral Component for Total Knee Arthroplasty: Richard S. Laskin, MD CORR Number 416, pp. 191–196 B
(26) The Influence of TiN coating on the Wear Characteristics of TiAlVa against PMMA in a Pin-on-Disk Test: Bauman A (in German on File)
(27) Tribology of a TiN Coated Total Knee Implant against PE in a Knee Simulator: Dr. rer. nat. Kremling IMA Dresden Gmbh (On File)
(29) Bioelectrical and Tribologic Considerations of Alternative Bearing Surfaces: Pat Campbell, PhD, Fu-Wen Shen, PhD, and Harry McKellop, PhD CORR • Number 418, January 2004 98-111
(30) Kratzspuren auf Femurkomponent durch Arthroskopie Studie am Leichenknie mit CrCo und TiN implantaten: Witt M, Schröder L, Plath J Orthopädisch universitätsklinik D 18055 Rostock (on File)
(31) Titanium Nitride Coatings for Orthopaedic Implants: DOT Gmbh 2005 (On File)
(32) Characterizing and Optimizing the Allergy-Reducing PVD Coating in Medicial Applications: Retzlaff M. Thesis (in German on File)
(33) The Influence of Surface Treatment on the Surface Roughness of PVD Coatings: Bauman A (in German on File)
(34) The Adherence Strength of TiN PVD Coatings on Orthopaedic Implant Alloys: Bauman A (in German on File)
(35) Metal Ion Release from Non-Coated and Ceramic Coated Femoral Knee Components: Boil test 240 h in NaCl-solution nach FMZ PhysWerk VA 97350, University Würzburg (D) (On File)